Skip to content

Autoregression

  • Predict future values of a time series by regressing on its past observations (lags).
  • Choose a number of lags and fit a regression to estimate how past values influence the next value.
  • Commonly applied to forecasting problems like product demand, stock prices, and weather.

Autoregression is a time series analysis technique that uses previous values of a time series to predict future values.

Autoregression models predict a time series’ next value by using a specified number of past values (lags) as predictors. The steps described in the source are:

  • Identify the number of lags to include (for example, 3 lags uses the current and previous 2 months to predict the next month).
  • Use regression analysis to estimate the relationship between the series and its lagged values.
  • Form a mathematical equation from the regression coefficients to produce forecasts.

The method is applied to time-series forecasting and modeling for domains such as stock prices, product demand, and weather patterns.

Given monthly sales data:

  • Month 1: 100 units
  • Month 2: 120 units
  • Month 3: 140 units
  • Month 4: 160 units

Using autoregression with 3 lags, the relationship identified by regression is:

Sales (Month 5)=100+20(Sales(Month4)Sales(Month3))+20(Sales(Month3)Sales(Month2))\text{Sales (Month 5)} = 100 + 20*(Sales (Month 4) - Sales (Month 3)) + 20*(Sales (Month 3) - Sales (Month 2))

Substituting the values:

Sales (Month 5)=100+20(160140)+20(140120)=100+2020+2020=300 units\text{Sales (Month 5)} = 100 + 20*(160 - 140) + 20*(140 - 120) = 100 + 2020 + 2020 = 300 \text{ units}

Given daily stock prices:

  • Day 1: $100
  • Day 2: $105
  • Day 3: $110
  • Day 4: $115

Using autoregression with 2 lags, the regression relationship is:

Stock Price (Day 5)=$100+5(Stock Price (Day 4)Stock Price (Day 3))+5(Stock Price (Day 3)Stock Price (Day 2))\text{Stock Price (Day 5)} = \$100 + 5*(\text{Stock Price (Day 4)} - \text{Stock Price (Day 3)}) + 5*(\text{Stock Price (Day 3)} - \text{Stock Price (Day 2)})

Substituting the values:

Stock Price (Day 5)=$100+5($115$110)+5($110$105)=$100+55+55=$125\text{Stock Price (Day 5)} = \$100 + 5*(\$115 - \$110) + 5*(\$110 - \$105) = \$100 + 55 + 55 = \$125
  • Forecasting stock prices
  • Predicting demand for products
  • Modeling weather patterns
  • Time series forecasting